



### Characteristics and Behavior of Microorganisms

- All raw foods normally contain microorganisms that will eventually cause spoilage unless they are controlled or destroyed
- Food preservation is a competition between the human species and microorganisms
  - We attempt to preserve the food that
    - microorganisms attempt to utilize



#### Characteristics and Behavior of Microorganisms

- The microorganisms of primary concern to the food processor are molds, yeasts, and bacteria
- They can grow in food or the processing environment under suitable conditions









- Spoilage causes changes in a food which make it:
  - >Unwholesome
  - ➤Unattractive
  - ≻Unsalable
  - May affect quality (BUT NOT NECESSARILY SAFETY)
- Illness is caused by pathogenic microorganisms and/or their toxic by products





- Ubiquitous in nature (most spoilage, some pathogens)
- Sources of fecal contamination (mostly pathogen
- Humans (poor hygiene practices)





## Introduction to bacteria

- Microbes were mostly unknown until the late 1800s, because they are so small
- Most bacteria DO NOT cause food-borne infections!

# Some Microorganisms Cause Disease

- The majority of laboratory-diagnosed cases of bacterial foodborne illnesses are caused by just a few microorganisms
  - Salmonella spp.
  - Campylobacter
  - Shigella spp.
  - Clostridium perfringens
  - Staphylococcus aureus











Logarithmic Review  $10^{0} = 1$   $10^{1} = 10 = 1 \log$   $10^{2} = 100 = 2 \log$   $10^{3} = 1,000 = 3 \log$   $10^{4} = 10,000 = 4 \log$   $10^{5} = 100,000 = 5 \log$   $10^{6} = 1,000,000 = 6 \log$ Remember you can't subtract exponents























- Atmosphere (Aerobe vs. anaerobe)
- Temperature (mesophile vs. thermophile)
- Time
- pH (acid tolerant sporeforming spoilage organisms – not a LACF issue but may be a critical factor)
- aW (amount of available water, can be a critical factor but usually not an important factor in LACF spoilage and safety)







# Fine If delays occur after 1) sealing before processing or 2) in cooling after processing: Growth of spoilage organisms or outgrowth of mesophilic or thermophilic sporeforming spoilage organisms may occur



# Temperature & time abused AF spoilage concerns

- The aforementioned sporeforming thermophiles may grow in equipment that contacts food if the temperature is within their growth range
- Microorganisms that grow under these elevated temperatures create spores that are even more resistant to heat



- Some flat-sour facultative aerobes, such as *Bacillus stearothermophilus*, are thermophiles
- Proper cooling after thermal processing and avoiding high temperatures during storage are essential since the thermal process for acid food is not sufficient to destroy their spores



- Spoilage by the thermophilic anaerobe *Clostridium thermosaccharolyticum* has been seen in canned tomato products in the pH range 4.1 to 4.5
- The thermal process for acidified foods is not adequate to destroy the spores of the organism; however, the problem will not occur if the product is properly cooled and stored at temperatures below 95°F









#### pH Requirements

- All bacteria have a minimum below which they will not grow and a maximum above which they cannot grow
- The pH of foods can be adjusted to help control microbial growth
- The pH of a food is extremely important with respect to the control of *Clostridium botulinum*



## Effect of pH on Required Heat Treatment

- The application of mild heat destroys all bacteria that are non-sporeformers or all vegetative cells in either low-acid or acid foods, including the vegetative cells of *C*. *botulinum*
- In low-acid foods, high heat must be applied to kill the spores of *C. botulinum* or the spores of other food spoilage organisms

### Effect of pH on Required Heat Treatment

- Thus, these foods must be heat processed under pressure
- In acid foods, there is no concern with the spores of *C. botulinum*
- These spores are prevented from germinating and growing because the pH is 4.6 or below

#### Effect of pH on Required Heat Treatment

• Since only the vegetative cells must be destroyed in acid foods, boiling water cooks or hot-fill and hold procedures may be used

| A                 |           | ate pH Rang<br>ected Foods | le        |
|-------------------|-----------|----------------------------|-----------|
| Lemon Juice       | 2.0 - 2.6 | Tuna                       | 5.2 - 6.1 |
| Apples            | 3.1 - 4.0 | Sweet Potatoes             | 5.3 - 5.6 |
| Blueberries       | 3.1 - 3.3 | Onions                     | 5.3 - 5.8 |
| Sauerkraut        | 3.3 - 3.6 | White Potatoes             | 5.4 - 5.9 |
| Orange Juice      | 3.3 - 4.2 | Spinach                    | 5.5 - 6.8 |
| Pineapple, canned | 3.4 - 4.1 | Beans                      | 5.6 - 6.5 |
| Apricots          | 3.3 - 4.0 | Peas, canned               | 5.7 - 6.0 |
| Tomatoes, canned  | 3.5 - 4.7 | Corn, canned               | 5.9 - 6.5 |
| Peaches, canned   | 3.7 - 4.2 | Soy Beans                  | 6.0 - 6.6 |
| Pears, canned     | 4.0 - 4.1 | Mushrooms                  | 6.0 - 6.7 |
| Bananas           | 4.5 - 5.2 | Clams                      | 6.0 - 7.1 |
| Beets, canned     | 4.9 - 5.8 | Salmon                     | 6.1 - 6.3 |
| Asparagus, canned | 5.0 - 6.0 | Coconut milk               | 6.1 - 7.0 |
| Beef              | 5.1 - 7.0 | Milk                       | 6.4 - 6.8 |
| Carrots           | 4.9 - 5.2 | Garbanzo Beans             | 6.4 - 6.8 |
| Peppers, green    | 5.2 - 5.9 | Chicken                    | 6.5 - 6.7 |
| Papaya            | 5.2 - 6.0 | Eggs, whole                | 7.1 - 7.9 |
|                   |           |                            |           |

- Acidified foods do not require a severe thermal process to assure product safety
- Therefore, a variety of spoilage-causing, acidtolerant sporeformers may survive the process
- A thermal process for acidified foods is designed to inactivate a certain level of these sporeformers



- The butyric acid producing anaerobes, such as *Clostridium butyricum* and *Clostridium pasteurianum*, are mesophilic sporeformers
- The spores are capable of germination and growth at pH values as low as 4.2-4.4 and consequently are of spoilage significance in acidified foods, particularly if the pH is above 4.2



- Aciduric flat-sours bacteria are facultative anaerobic sporeformers that seldom produce gas in spoiled products
- The ends of spoiled cans remain flat; hence the term "flat sour"
- Spoiled products have an off-flavor that has been described as "medicinal" or "phenolic"



- Pinpointing the ingredient that is contributing the most to the total spore load may prove beneficial in process control
- For example, proper handling of fruits and vegetables prior to use, such as washing and culling, may also help to reduce spore loads



- Alicyclobacillus spp., such as A. acidoterrestris and A. acidocaldarius, are flat-sour sporeformers that can grow at a pH as low as 3 in shelf stable juice and other beverage products
- Spoilage caused by *Alicyclobacillus* spores has been reported in a variety of juices and beverages (in particular apple juice products), especially when the product packaging allows oxygen transmission

- The spoilage can be minimized by multiple approaches
  - Treating a selected ingredient with an intensified thermal process (at temperatures above 212°F)
  - Product formulation
  - Limiting oxygen availability
  - Rapid cooling of finished products







• All of the substances dissolved in the water reduce the number of unattached water molecules



- Thus, if some ingredient such as sugar, salt, raisins, dried fruits, etc. – is added to food, it competes with the microorganism for available water
- The water-binding capacity of a particular ingredient influences the amount of water left for the growth of microorganism



#### Control of Bacteria by Water Activity

- Examples of foods preserved with this method are
  - Some cheese spreads
  - Peanut butter
  - Honey
  - Syrups
  - Jams and jellies
  - Canned breads
  - Confectionery preparations toppings

| ater activity of some comn           | 101110003 |
|--------------------------------------|-----------|
| • Liverwurst                         | 0.96      |
| Cheese Spread                        | 0.95      |
| • Caviar                             | 0.92      |
| • Fudge Sauce                        | 0.83      |
| • Semi-moist Pet Food                | 0.83      |
| • Salami                             | 0.82      |
| • Soy Sauce                          | 0.80      |
| • Peanut Butter – 15% total moisture | 0.70      |
| • Dry Milk – 8% total moisture       | 0.70      |
| ,                                    |           |

## Control of Bacteria by Water Activity

- As far as *C. botulinum* is concerned, a water activity of 0.85 provides a large margin of safety
- Studies with this organism show that an accurate water activity of 0.93 plus a mild heat treatment will give commercial sterility

## Regulatory Requirements Related to Water Activity

- Under the FDA regulation 21 CFR Part 113, a canned food with a water activity greater than 0.85 and a pH greater than 4.6 is considered a low-acid food, and its minimum heat process will have to be filed by the individual packer
- If reduced water activity is used as an adjunct to the process, the maximum water activity must also be specified

# Regulatory Requirements Related to Water Activity

• If the pH of the product has been adjusted to 4.6 or less and the water activity is greater than 0.85, the product is covered by the acidified food regulation (21 *CFR* Part 114) and requires only enough heat to destroy vegetative bacterial cells

## Regulatory Requirements Related to Water Activity

- Any non-meat containing food, regardless of the pH, with an water activity of 0.85 or less is not covered by the regulations for either the low-acid food (21 *CFR* Part 113) or the acidified food (21 *CFR* Part 114)
- However, these products are covered by FDA's Current Good Manufacturing Practices (CGMPs) regulation (21 *CFR* Part 110

#### Methods for Determining aw

- One commonly used method is an electric hygrometer with a sensor to measure equilibrium relative humidity (ERH)
- The instrument was actually devised by weathermen, and the sensors are the same as those used to measure relative humidity in air


# Methods for Determining aw

• A single measurement of water activity on a food provides information as to which types of microorganisms are most likely to cause spoilage and how close the water activity is to the safety limits

### Molds

- Molds are widely distributed in nature, both in the soil and in the dust carried by air
- Under suitable conditions of moisture, air and temperature, molds will grow on almost any food
- The black or green discoloration that appears on moldy bread is a common example of mold growth

# Molds

- Molds are also able to survive on a wide variety of substances not normally thought suitable for supporting life
  - These include concentrated solutions of some acids
  - Water containing minute quantities of certain salts
  - Certain pastes used in labeling

#### Molds

- Mold spoilage of food in closed, processed containers is rare but not impossible
- Most molds have little heat resistance and cannot survive the thermal processes for low-acid canned foods
- Therefore, if present, it is the result of serious underprocessing or post-processing contamination
- Since molds need oxygen to grow, only slight growth can occur unless the food container has an opening to the outside environment





### Yeasts

- Yeasts are widely found in nature and are particularly associated with liquid foods containing sugars and acids
- They are quite adaptive to adverse conditions such as acidity and dehydration
- Like molds, yeasts are more tolerant of cold than of heat

#### Yeasts

- Most yeast forms are destroyed on heating to 170°F
- Spoilage may result from the presence of yeast in canned food, but if this happens, severe underprocessing or leakage must be suspected
- Usually the growth of yeasts results in the production of alcohol and large amounts of carbon dioxide gas
- The gas will swell the container

# **Introduction to Acidified Foods**

- The preservation of foods using acid is older than recorded history (ex. yogurt and sauerkraut)
- The naturally formed acid serves as a preservative for the food and extends its shelf-life, but the nutritional quality of the food is relatively unchanged

#### **Introduction to Acidified Foods**

- It is not necessary to allow foods to ferment in order to preserve them
- The same preservative effect can be achieved by adding acids, such as vinegar, to low-acid ingredients, such as vegetables
- These products are called acidified or acidified low-acid foods

# **Definition of Acidified Foods**

- An "acidified food" is defined by FDA in 21 *CFR* 114.3 (b)
  - A low-acid food to which acid(s) or acid food(s) are added to produce a product that has a finished equilibrium pH of 4.6 or below and a water activity greater than 0.85
- Examples of acidified foods include:
  - Acidified artichoke hearts, bean salads, peppers or pimentos;
  - Marinated beets or mushrooms;
  - Fresh-pack pickles



# Fermentation

 Anaerobic catabolism in which an organic compound serves as an electron donor and another serves as an electron acceptor with ATP being produced by substrate level phosphorylation



#### Summary

- Two primary types of fermentation organisms
  - Bacteria: Lactic acid bacteria-produce acids
  - Yeasts-produce ethanol
- Foods are fermented to
  - Preserve
  - Nutrition
  - Uniqueness
  - Sensory properties
  - Economics







# **Natural Fermentation**

- Positives
  - Distinct flavors
  - Less expensive in the short term
- Problems
  - Inconsistent end product
  - Limited control of fermentation
  - Scale issues in some industries























# **General Guidelines**

- Known organism (preferably LAB)
- Rapid and continuous pH reduction
  - below 4.6 in less than 24h



# Miso

"Although it's technically done after two months, my ferment takes six months to hit its prime. The longer miso ferments the better it tastes, and as far as I know miso has an indefinite shelf life. I have no knowledge as to when my miso hits a 4.6 pH..... I really know nothing about the pH of miso."

